s^2=7+s(1-3s)

Simple and best practice solution for s^2=7+s(1-3s) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for s^2=7+s(1-3s) equation:



s^2=7+s(1-3s)
We move all terms to the left:
s^2-(7+s(1-3s))=0
We add all the numbers together, and all the variables
s^2-(7+s(-3s+1))=0
We calculate terms in parentheses: -(7+s(-3s+1)), so:
7+s(-3s+1)
determiningTheFunctionDomain s(-3s+1)+7
We multiply parentheses
-3s^2+s+7
Back to the equation:
-(-3s^2+s+7)
We get rid of parentheses
s^2+3s^2-s-7=0
We add all the numbers together, and all the variables
4s^2-1s-7=0
a = 4; b = -1; c = -7;
Δ = b2-4ac
Δ = -12-4·4·(-7)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-\sqrt{113}}{2*4}=\frac{1-\sqrt{113}}{8} $
$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+\sqrt{113}}{2*4}=\frac{1+\sqrt{113}}{8} $

See similar equations:

| -4(2x+2)+5(3x-1)=-20 | | -9(w-7)=8w+29 | | x=8/3x-16= | | x|-5=-4 | | 14–3m=8 | | 9n–4+n=16 | | -4(2x+2)+5(3x-1)=20 | | -7+5(-8x-7)=278 | | 2-9x=29 | | 2u+u=12 | | -8a-a=0 | | 3x-32=7(x-8) | | 11x+24x+5=180 | | a-7a=-7-5a | | 9z+10=3*5-3*3z | | 9u-u=48 | | 4x+3=(-5x)+21 | | -8b-3b=-15-2-2b+8b | | 2.6z-12+3.2=46 | | (0,5)m=3 | | -2(3x-3)=-6x+6 | | 3(q+4/​​3​​)=2 | | 2000=x(150-3x) | | 199=-6(8+6x)-5 | | 2x+3(2x+3)=105 | | 1/2(n+4)=6 | | 2√4x-3=14 | | 1.2x+3.6=0 | | 5(x-4)+2(6X+8)=7+7X-X | | 14v+7=-7(7v+7) | | -13.04+1.5f=3.1f+7.28 | | 1x-10+2x+40=90 |

Equations solver categories